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ABSTRACT

The objective of this research is to develop a preprocessing technique for
decomposing pictorial data into its topological units and subunits so as to
enhance any subsequent feature/primitive extraction. To enhance the later
stages of perception implies that each topological unit and its subunits must
be labeled in such a way as to reveal their relationship to the other topological
units of the pattern. If the labeling can be standardized then the feature/
primitive a~.alysis, which is very application—oriented , can process the results
of the preprocessor deocmposition as desired . While the proposal for such a
decomposition (called segmentation or region analysis) is not new, the concept
of decomposition to reveal a pattern ’s intrinsic structure prior to and inde—

• pendent of feature/primitive analysis is new.
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1.1 INTRODUCTION

An accepted , generalized model of a pat tern recognition system is shown
10 Vi gure . Class I ca it y • I he I ransdurcr as t h e Input device SCI1SCS the environment
It~ generate a pattern;  the preprocessor readies the pattern for analysis (e.g. ,
noise removal); the extractor analyzes the pattern , extracting information
which will enable the classifier to decide to what class of known patterns the
input pattern belongs.

There exists both neurophysical evidence in certain animals and psychological
evidence in humans that indicate that feature/primitive extraction is part of the
recognition process (1). However there also exists strong psychological evidence
that the feature/primitive processing alone is insufficient to account for the
phenomenon of pattern recognition (2). Such evidence suggests the need for a
pre—analytic process to take place before the feature/primitive analysis begins.
Such a preprocessor task deals with determining the figure—ground context of a
pattern. This task has been referred to by different psychologists as the perception
of the figural unity (3), the perception of the generic object (4), and the
perception of the topological object (5). This proposal is in contrast to the
strictly feature/primitive viewpoint which essentially ignores the context of a
pattern , even though such a context has been recognized as an important part of
perception (6). However , as pointed out by Deutsch (7), this proposal should not
be confused with the Gestalt approach of template matching. The Gestalt viewpoint
contends that perception of a figure in a pattern is not a figure in isolation ,
but a figure set upon a ground (context) and that such perception is the only
level of analysis needed , i.e., feature/primitive analysis is not necessary.
Thus, f t  appears , there is justification and need for a preprocessor stage that
decomposes a pattern into units which reveal its figure—context relationship.
As indicated by Piaget (5) such a decomposition would be topological in nature as
opposed to projective—Euclidean in nature. That is, the decomposition should not
depend on concepts such as size, angle , distance , parallelism , etc.; but instead
on the concepts of adjacency , neighborhood , connectedness , dissection of an
object , etc. (8).

As a practical motivation for such a decomposition , consider the following
proposal by Breeding (9). Breeding has concluded that while impressive results
have been obtained for the automatic identification of aircraft from television
patterns using moment invariants (10), such a technique emp loys global features
and is susceptible to the absence of pictorial data. In particular , if a subunit

• (e.g., wing) of a topological unit (e.g., aircraft) is obstructed because of
cloud cover, camouflage, shadows, etc., then misclassification usually results.
Thus it would be advantageous to investigate methods of decomposing a topological
unit into the subunits which reveal the intrinsic structure of the topological
unit. These subunits would then be considered as the input to the feature/
primitive extraction stage. Such . Jecomposition technique should not limit
the invariance of the subsequent recognition technique and should be amenable to.. a braod spectrum of pictorial patterns.

r
With these ideas in mind , the objective of this research was to develop a

preprocessing technique for decomposing pictorial data into its topological units
and subunits so as to enhance any subsequent feature/primitive extraction. To

Ii enhance the later stages of perception implies that each topological unit and its
subunits must be labelled in such a way as to reveal their relationship to the
other topological units of the pattern . If the labelling can be standardized then
the feature/primitive analysis, which is very application—oriented , can process

1
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the results of the preprocessor decomposition as desired . While the proposal for
such a decomposition step (called segmentation or region analysis) is not new ,
the concept of decomposition to reveal a pattern ’s intrinsic structure prior to and -

independent of feature/primitive analysis is new.

To accomplish this objective the following questions must be answered :

1) How does one define the topological units of a pattern?
2) How does one label these topological units?
3) How does one define the subunits of a topological unit?
4) How does one label these subunits?

• S

a.

1.

U t

2 

-~~~~~~~ -~~~~~ - ~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~ 
-- - -  -. .

, 
- -.

~~~~



,-

~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

--

~~ 

F
2.1 CONNECT RELATION

Wha t kind of a relation would best define the topological units of a pattern?
The topology of a pattern can be represented in many different formalisms, e.g.,
adjacent cells of a discrete plane , neighboring automata of an array processor ,
connected vertices of a network grid , etc. To express all these , a generalization
of the notion of connectivity is needed . Let X and Y be denumerable sets , then

• define connect’Y//X> as the subset of all elements of X which are adjacent to
the elements connect0<Y//X> = YflX. If connect°<Y//X> = 4~, then connect<Y//X> =

The second argument preceded by a // symbol denotes the restriction of Y to X.
Elements adjacent to adjacent elements can be represented by a recursion of
connect (see Figure 2).

connect 2<Y//X > = connect< (connect<Y//X>)//X>

connect
3<Y//X> = connect< (connect< (connect<Y//X>)//X>)//X>

The recursive closure of connect is given by

connect<Y//X> = connect~ <Y//X>

where ii is such that

n n4-lco nne c t <Y//X> = connect <Y//X> .

A set X is called a connected set if Vx.cX , connect< x .//X> X. Note that since

the concept of adjacency is undirected , connect is an equivalence relation and ‘thus
can partition a set.

at
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3.1 PICTURES

3.1.1 Picture as Input

Physically, an input pattern will be a two—dimensional , binary—valued
array. Such an input is practical to obtain when a TV camera is used as the
transducer (11). If the TV system is equipped with variable threshold and color
variables (12), the real—world environment can be approximated by a set of
parameter dependent binary—valued patterns.

Mathematically, an input pattern will be considered as a regular tessellation
of the plane into binary—valued cells. For a plane , there are only three possible
regular tessellations: triangular , square, and hexagonal. On each such tes-
sellation various indices can be defined such as forward raster , backward raster,
diagonal, etc. These indices allow one to talk about the ith cell of a given
tessellation. A fixed—size , connected set P of these cells will be called picture
cells. This set P will be bounded by a reachable set B called background cells.
The values of the background cells do not vary and are a priori. The values of
the picture cells do vary and are given by the

h
discrete binary—valued function

pict<i> where i represents the index of the i~ cell for a given tessellation.

3.1.2 Topological Units of a Picture

Using ~~~~ as the characteristic function of a set , the following
topological subsets of a picture can be defined . The images set I is

{j : ~~~~.<j> = b ; j c P }

where b may equal either 0 or 1 but not both.

The ground set_I is defined as the set of all picture cells which are not
image cells, i.e., I = P—I. The surrounds Let D is

{j : BCconnect<j//IUB> ; j c I}.

Thus D is the subset of all ground cells that are connected to the background B.
The holes set H is the subset of all ground cells not connected to the background
i.e., H = I—D. From these definitions it follows that these three topological
subsets are pariwise disjoint and thus form a partition of the picture set P.
and that for picture P = I UH UD .

a a a a

The basic topological unit of a picture will, be a region. A region, R,
is any connected subset of a picture. Since a region is a connected set, the
following definitions can be made. A cell jcR is a border cell if connect<j//PUB>jR,
i.e., not all the cells adjacent to j are in R (see Figure 3). The border cells
of a region are partitioned into contours ~C = con~ect<j//X> where jcX (border

cells). Thus a contour of a region is a connected set of border cells, ~CCR. A

simply—connected region is a region that has nly one contour (see Figure 4). A
multiply—connected region is a region that has two or more contours (see Figure 5).

The sets I, D, and H can be partitioned into topological regions called
respectively , images, surrounds, and holes. Each image ~I conftect<i//I>; each

surround 4D — con~ect<j//D> ; and each hole kH connect<k//H> (see Figure 6).
-I 

~._ i
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From these topolog ical reg ions a pseudo reg ion , called a collage , can be
defined. The collage set K is the set of all collages. A collage is fabricated
by combining topological reg ions and is usef ul for decomposing regions nested
within regions (see Figure 7). A collage may or may not be simply—connected .

3.1.3 Print of a Picture

If one agrees to talk about picture subsets only, then P can be considered
as the universal set. As a result , one can agree that i~X implies icP—X since
XCP. Define the print of a picture subset X , denoted xi” as

11 iEX
=

~~ 
1~X.

This leading subscript notation is used to differentiate prints from the usual
following subscri pt notation for subsets. The print of a single cell j ,  denoted
i T’ , is just

_ 1 1 i = j
-

‘3 o i + j .

The r e l a t ionsh i p between a print and a picture is given by the develop relation.

~ develo p~ P~~.

That is , deve1i~j~ operates on the binary values of a picture such that the image
cells are labelled l and the ground cells are labelled 0. To do this labelling
it is necessary to have a priori knowledge about how the TV system assigns
binary values. The importance of the develop relation lies in the fact that one
can work with prints know~ng that they can always be found for any picture.

Because pictures are fixed—size se ts  it makes no sense to talk about “a
being a subset of 

~~ 
However , two pictures are said to be equal if T ~‘ =

a b
and not equal if P + ~ 

P.
a b

3.1.4 Print Operations

For a given tessellation and a given index one can define a print operation
between the cells of one pr in t and the cells of another print to produce a new
print. For example , print operations analogous to Boolean operations can be
defined since each cell takes on only two values. Define

z
x
p,Y

p> =

. . where z = {j ; ~~~~
j> & = l} and & is the Boolean and .

Define

x
p
’Y~~ 

=

where Y = {j  : p~~~~ <j> ~~~ ç~.1~
,<j> 11 and is the Boolean or.

5
3.
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Define

= 
YP

where Y = (j : P ict~ <j> O}. Also a generalized picture and and or can be
defined .

n m m ,n
ii P = and< P,and< P,. . .  ,and< P , P> ...>> , also iT iT x
1 1 n n—i 2 1 i i  , J J

~ x~~ ~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
also v 

~~ :~: ~Likewise , one can define a pictu re operation on the cells of an existing
picture to produce a new picture. Define

index< 1’> =x
where j is the first index jcX. Define

rea.ci~~y
P//

~
P> =

where Z = conne ct <Y/ /X ~ . Similar  to be fore , reach°<yP1I~
P> = where

Z = X’lY, in other words reach°- y P//~
P> and- :~ P . < P> . Def ine

remain< y P//~
P>

The remain operation can be considered as a complertent to the reich operation.
That is, while the reach operation produces a print of all cells extracted from
an existing print , the remain operation produces a print of all cells remaining
in the existing print after a reach extraction (see Figure 8).

To show how these picture operations can be used , consider the recurring
problem of extracting the next region with index greater than k from the subset
X. Assume the next such region has index j, then in terms of prints

k

k 

re~ch< index<remain< 
~

‘ 

~
“ ?>>“ i> - 

—

remain< 
~

‘ 

~~~~~ will  produce a print that has all regions of index k or

less removed from it. The index<
~
P> must then be ~P by assumpt ion, resulting

in reach< .P// P> , the desired result.
3 x

• I

~1
6
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4.1 SUBREGION RELATION

What kind of a r e la t ionsh ip  would best reveal the in t r ins ic  s t ruc ture  of a
p a t t e r n ? Since the  topological  u n i t s  and subunits  are being generated by a
decomposition , a hierarchical type relation is implied . That is to say,
a decomposition implies that the topological units and subunits are related such
that they recursively fit together to build up the whole pattern . Thus it is
assumed that the choice of a hierarchical relation (partial order relation (14))
for labelling the topological units will best reveal the intrinsic structure of
the pattern and hence enhance any subsequent perception processing.

Since a region has bee n chosen as the basic topological unit (as opposed
to a subset), a subregion relation was chosen as the hierarchical relation .
This partial order relation was defined as R< .R if .RC .R and .R< .R if .R~ .R.

1— 3  1 3 1 ‘3Wh ile  conceptua l ly  simple , this relation has proven e f f ec t ive  for  two reasons .
First , because of the way topological reg ions of a p ic ture  are spa t i a l ly
rep resented , if .Kf l . R + 4, then e i ther  .R< .K or . R= .K. Second , because the

1 3  3 1  3 1
sub region relation can be app lied to reg ion decompo sition also , a unified theory
can be presented for topological decomposition .

7
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5.1 PICTURE DECOMPOSITION

A picture in its simplest form has only a multiply—connected surround and
a simply—connected image. It is the presence of a multiply—connected image that
introduces holes and nested images. However such multiply—connected regions
can be changed to a pseudo simply—connected region by creating a collage. Such
a collage would consist of the multiply—connected region plus all other topolog—
ical regions “inside” the multiply—connected region. Thus any picture can be
decomposed into its topological regions ( I, D, k

E) by representing it as a
sequence of collages. Each collage will ~e d~ composed into its “outer ” topolog ical
region while the “inner” topological regions will form a new collage. The
decomposition stops when the new collage is a single topological region, and
hence can not be segmented anymore.

Define the surround<
~
P> as

(1 BCre~ch i//(P—X)IJB> : irP—X }.

Now given the print 
1
P of any picture the following prints can be derived

(1) 
D1’ 

= surround.z
1P> 

k
(2) 

D~ 
= re~ ch<index<r ema in< ’~

j

~“ K~ 
= ~~p<surround< 1

P>> .

Each ~D represents a surround and K represents the collages set. Some of the

collages of 
K1’ 

represent simply—connected images, and others represent mutliply—

connected images with holes and other images “inside” them. The mutliply—
connected images are extracted as part of a collage . - -

k
(4) 

K1’ 
= re~ch<index<remain<

V

j 
1 1

and then segmented by

(5) 11’ 
= and<surround<and< 2~p< 1

P> , K1’>>’ K1’>~j j _1 
— .

A new collage can now be derived from each exisitng collage minus the
multiply—connected image by

(6) 1(1’ = and<
~~~~

<surround<and <
~~~~

<
I
P> ,K P>>> ,K P> . ::

Some of the collages of (6) represent simply—connected holes and others represent
multiply—connected holes with images and other holes “inside” them. The multiply—
connected holes are extracted as part of a collage as in (4) and then segmented by

(7) H1’ 
— and<surround and<

1
P, K1’>>’ K1’>

j j j 
— .

A new collage can now be derived from each existing collage minus the
multiply—connected hole by

8
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(8) 
K1’ 

= and’-com1~surround~and :
1
P, K1’ ’ K1’

n n

Some of the collages of (8) represent simp ly—co nnected images and others, multiply—
connected images with holes and other images “inside” them. These can be
decomposed using (4) and (5) and so forth.

5.1.1 Grammar Model

The picture decomposition can be modelled by a context—free phrase
structured grammar .

VN 
= ~~,. D ,D , . K ,K , . I , I , . H ,H ,R} ,

VT 
= {d , ? , .,  :, ;, ), (} ,

and the production rules are:

P~~~(DK) ?

K- ’~~.KK
3

K -* .K
3

-
~ ( . 1K)

3 3

j  3
+ (~HK)

‘3 3
-* R :

3
-
~ R.

j
H~~~R ;

R - * d

- - where P is the start symbol and d represents some kind of descriptor for a region.
Note how the punctuation marks label the regions as being either a surround , an
image , or a hole. The string derivation for Figure 2 is:

P (DK) ?

a
D
c

D(
b
I
d
~~

f
H
g
I~~

e
t ) ?

*(9) ~*(d:d:(d.d;(d;d.))d.)?

Because the grammar is context—free there exists a derivat ion tree for
expression (9) . Such a tree depicts the hierarchical relationship between the
topological regions of the picture. That is to say , from such a tree, or more

- ~~
‘ precisely , from a string of the language, a Hasse diagram for the subregion

relation can be derived . For example , if the parentheses are interpreted as
levels in the Hasse diagram and the descriptors/punctuation marks as topological
region labels, then the Masse diagram of Figure 9 can be derived for string (9).

- - 
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Because of this grammar model, the decomposition can be defined as the output
of a parser. The parser proceeds top—down when it is given a picture and -

produces as output a string of topological region descriptors. The parser
proceeds bottom—up when it is given a string of topological region descriptors
and produces as output a picture. In each case the output is uniquely determined
to within an index only , e.g., compare Figure 10 with Figure 11.

1.

1.

a

1.

- t
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6.1 REGION DECOMPOSITION

The princ iples of picture decomposition can be applied to region decomposition
if a region could be separated or disconnected . This separation would create
new regions which could then be hierarchically related through the subregion
relation. Intuitively, one could envision a simply—connected region being
decomposed and related as illustrated in Figure 12. Basically, cells or areas of

- - decomposition are determined and the region is separated at these, thus forming
new regions . Such an operation will be referred to as forming the separable
subregions of a region. These separable subregions , denoted ~R, will be considered
as the topological subunits of a region.

6.1.1 Skeleton Graph

Let S represent the medial axis or internal skeleton of a region R as

• defined by Blum (14). Such a descriptor is located at the median, between the
contours o f a region and forms a connected graph—like region (see Figure 13).
The skeleton of a region can be generated by successively removing certain
contour cells (15). Let skelrRP// M F> denote the picture operation that executesa i
one removal of contour cells from region R restricted by mask M~.
Then the medial axis for region R reatricted by mask M~ is given by

- . the recursive closure of the skel operation ,

= sk
~
ls

RP//M
P> .

The skeleton is made up of branches and nodes N, the places where three or more
branches meet. The skeleton wiLl be represented by a graph G = (V ,E) .  The
vertices V = (v1,v2,... ,v l  are the end cells of the branches and the nodes N. The

edges E = (e1,e2,. .. ,e }  are the branches and each is associated with two vertices.
The skeleton graph will be assumed to have no self—loops or parallel edges, so

• that each branch of the skeleton can be uniquely associated with an edge. The
skeleton graph for a simply—connected region has no circuits and hence is a tree.

6.1.2 Separable Nodes

Define two special prints: the universal print 
~~ 

pict
~
<i> — I VicP;

and the empty print j , 2j~~~1~< i>  = 0 YicP. Define the picture operation of

growing a skeleton cell j as

• j1”/g1’> 
= reachn<

j
P//

U
P>

- - where n is the minimum y such that

~i :: ~~~
<
R1” reach

Y.z
j
P//

~
P>> + or <

P
P. reach~”

The growth of a set of skeleton cells X, is defined as
‘S

~rowth<~ P//~P> = 
~ ~

row<and<
l
P,
X
P>//

R
P> .

Two nodes flj~ fl
j  
NCS of a region R are nonseparable if

and<~ row< P/ I 1’> , grow < P/I 1’>> + P

i.e., their growths merge. Generalizing this, the nodes NCS of a region R

L - 
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can be partitioned by the separable relation

= 
~~
E<ni

,N//R> = (n . : n~ and n . are nonseparable}.

Thus all the nodes in a block N of the partition of N are nonseparable , but as
a group they create a set of noses separable from all other nodes of N. Each

is called a separable node.

6.1.3 Separable Subregions

Let N~CNC S for some region R, then the separable subregions adjacent to
are given by the print

= 

~~~-
<
R1” ~~~~~

z~ rowth<~ 1’
~
’
~
’
R1’>>~i

A print of a separable subregion 4R can be obtained in the usual fashion from

zPbY k
P = re~ch<index<remain<~ P/I  P>> / /  1’> .i Z Z

Let the part of skeleton associated with separable subregion R be denoted S, 
—

then a print of ~S can be obtained by

= and<
5

P, R1’>~3 1
6.1.4 Primitive Separable Subregion

Each subregion 
1
R can be further decomposed into separable subregions by

selecting some separable node N
1
C
1
S and growing it. If an 

1
S has no nodes,

further decomposition of the subregion is not possible. This lack of nodes
provides a stopping criterion for the decomposition. Define a primitive
separable subset as a subregion whose associated skeleton 

1
S has no nodes. 

- -

Obviously if skeleton S of region R has no nodes , then R itself is a primitive
separable subregion. Figure 14 shows a region and its skelton that has four
nodes, and three separable nodes. The center separable nodes has four separable
subregions adjacent to it , the other two separable nodes have three separable
subregions adjacent to them. There are a total of eight primitive separable
subregions.

6.1.5 Shared Separable Subregion 
- -

Figure 14 shows a decomposition where the separable nodes were selected - -

one at a time or one—selected ; however , the separable nodes can also be multiply—
selected. For mutliply—selected separable nodes, some of the separable subregions
will be adjacent to more than one separable node. Such subregions are called
shared separable subregions (see Figure 15).

6.1.6 Redundancy

The effect that these shared subregions haveon the results of the
decomposition is to appear as a redundant subregion in the hierarchical relation— 1 ’

ship. If a region decomposition contains no shared separable subregions it is
called nonredundant ; otherwise, it is called redundant. A redundant region
decomposition in which all shared separable subregions are primitive is called
primitive redundant.

12
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6.1.7 Grammar Model

The region decomposition can be modelled by a context— free phrase st ru tured
grammar.

• V
N 

= {R ,N ,O ,E ,x } ,

VT 
=

and the production rules are:

R - ~~[N }

R -

~ 
[N i ]

R - ~~[E]

x -* [0]

x -
~ [O]x

O~~~ [N ]O

O - * [N)
X -~~[NJX

X -~~[N ]

N -
~~
NiX

N
1 

-* n

X -
~ [E ]X

x [El

E - *e

R is the start symbol ; while e represents a descriptor for an edge, i.e., a
primitive separable subregion, and n represents a descriptor for a separable
node. The symbol 0 stands for a pseudo node . A pseudo node is a hypothetical
node that enables mutliply—selected separable nodes to have a common ancestor .
The string derivation for Figure 10 is:

R [01

~ I [N . [ E ]  [El  [N1[Ei [El [El i IN~ EE1 (El [Ni[EJ [El [E] Ill
(10) 

~ 
[[nl[el][e2][n3(e3][e41[e61)1n2[eSi [eZJ [n3[e3][e4](e6]]]].

Because the grammar is context—free there exists a derivation tree for
string (10) which depicts the hierarchical relationship between the separable
subregions of the region. For example, if the brackets are interpreted as levels

• in the Hasse diagram, and the edge descriptors as separable subregion labels,
- a then the Hasse diagram of Figure 16 can be derived for string (10).

Also because of this grammar model , the decomposition can be defined as the
output of a parser , just as was done for the picture decomposition. Once again
the output of the parser is uniquely determined to within an index only.

t 13
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‘.1 VERTEX ATTRIBUTES

The hierarchical relationship for the separable subregions of a region is
completely dependent on the order in which the separable nodes of the skeleton
graph are selected , and whether they are one— or mutliply—selected . To guide
the selection of separable nodes , the different characteristics of a skeleton
graph must be sorted out so that the cause and effect relationship between
vertices and edges can be identified .

The syntax of a graph characterizes the interconnection of the vertices
and edges. The semantics characterizes the size and shape of the edges and
vertices. A graph with the same syntax can have infinitely many semantic
characterizations . The semantics of a particular graph can be defined by
associating attributes with each edge and vertex. The attributes can be
thought of as functions whose values are assigned depending on the meaning that
the vertex or edge has for a particular graph.

For selecting nodes, the vertex attributes will be used . Two types of
vertex attributes have been recognized as aids in giving a “meaningful” ordering
for the nodes of a skeleton: cluster and selection . A cluster attribute is one
that characterizes a local property of a vertex. The concept of vertex clustering
is based on pattern recognition work which is interested in grouping points
using a local optimization criterion (16). A selection attribute is one that
characterizes a global property of a vertex. The concept of vertex selection
is based on operational research work which is interested in choosing points
using a global opt imization criterion (17).

7.1.1 Cluster Attributes

For a vertex v~ define the following useful cluster attributes:

1) degree<v1> n where n is the number of edges incident on v
i;

2) size<v1
> = s~ where ~~~~~~~P//~P> = reach

3) ~4g~.zv 1
> = {m

11 
,mlk,...,m . } where v

1
, v

k,..., V are all the vertices

adjacent to v1 and in
11 

— metric<v1,v1
> .

Given a cluster attribute , a cluster relation can be defined . A cluster
relation for the ai attribute on a connected graph (V,E) about vertex Vk,
denoted 

~~
_cluster<v

k
,(v,E)>, is defined as the set of all connected vertices from - -

vertex Vk that have an equivalent a1 
attribute value.

Because the cluster relation is an equivalence relation , each ai attribute
forms a partition of the vertices V. Denote such a partition as 4 . A set 

- -~

i
of such partitions (4 , 4 , .  . . , 4 } forms a partial ordered set under the refinementa a a1 2  n
relation (18). Thus the logical combination (conjunction and disjunction) of
cluster attributes can be defined from the greatest lower bound and the least
upper bound operations on this partial ordered set. For example, a partition 

- -

of all vertices with equal degree and equal size can be formed from the least
upper bound of partitions 4 and 4 .

degree size Li
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7.1.2 Selection Attributes

* For a vertex v~ , define the following useful selection attributes:

1) eccen<vi
> = !!~ .~

<5j  *
2) weight<v 1> = ~s. * m

~1
;

where 1 < j < cd<V’ and cd is the cardinality of the set .

Given a selection attribute , a select relation can be defined . A select
re lation for the a . attribute on a connected graph (V,E), denoted a1—select~z(V,E)> ,
is defined as the set of all vertices that have the minimal a1 attribute value .

For the special case when all s . are equal , the minimum eccentricity corres—
ponds to the center of the graph and the minimum weight corresponds to the median
of the graph (19). The definitions as given here are dubbed the weighted center
and the weighted median, respectively.

7.1.3 Simply—Connected Regions

Insight into the relationship between separable nodes , separable subregions ,
and vertex attributes can be gained through the following theorems. Denote
N as the set of nodes selected by a select relation; N as the set of nodes
g~nerated by forming clusters about each node of N ; an~

5an n—selected separable
node as either a one— or a multiply—selected separable node.

Lemma 1:

If the set N is connected , then the set of all n—selected separableCs
nodes generated from N is connected.cs
Lemma 2:

If the set N is connected , then the set N is connected .

Theorem

If each N of a redundant decomposition of a simply—connected region is
connected , then the decomposition is primitive redundant.

Lenima 3:

If two weighted centers (weighted medians) of a tree T = (V ,E) are non—
adjacent , then all the vertices in the path connecting the two weighted
centers (weighted medians) cannot be weighted centers (weighted medians).

Lemma 4:

If two weighted centers (weighted medians) of a tree T = (V,E) are nonadjacent,
then at least one vertex in the path connecting the two weighted centers
(weighted medians) must be a weighted center (weighted median).

Theorem 2:

Every tree T (V,E) has only one or two weighted centers (weighted medians) •

and the two, if they exist, must be adjacent, hence connected .

15 
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Theorem 3:

If the weighted center or weighted median is used as a selection attribute ,
any redundant decomposition of a stmply—connected region will be primitive
redundant.

L
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r
The picture operations were implemented on a binary array processor as

proposed by BreedIng (9). For this work, the proposed hardware array processor
was simulated by the software system dubbed CAPS (General Array Processor

• Simulator). Besides the picture operations already mentioned , operations to
smooth contours , fill gaps, and remove salt—and—pepper noise were also defined .
In addition , tasks which use the array processor and conventional arithmetic

• computation were defined to prune the branches of the noisy skeleton, and to
screen out regions which were considered too small to be topologically relevant.

For the special case of a simply—connected region when no cluster relations
are defined and the selection attribute is the center (i.e., all s~ are assumed
equal), the decomposition can be completely implemented by picture operations.
Such picture operations were used on the aircraft decomposition suggested by

• Breeding. A print of an aircraft was first parsed in a top—down fashion. The
resulting string description was then analyzed to extract and label the separable
subregions corresponding to the wings, t he nose section, and the tail section.

a

‘U.

I
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9. I SUMMARY AND CON CLU STONS

in the past , the decomposition of patterns has been viewed as two apparently
distinc t steps: 1) decomposition into topological units; 2) decomposition of
each unit into “primitives”. Step 1 was realized either by the classical method
of contour following (22), or by the more recent development of heuristic analysis
of the contours (23,24). Step 2 was realized either by restricting the units to
line drawings (25,26), by approximating the units ’ contours by straight lines
(27 ,28), or by approximating the units by convex polygons (29—32).

In contrast , the decomposition described here considers these two steps to
be related . The pattern was first considered as a fixed—size set of picture
cells, then its topological units (regions) were defined and hierarchically
related. These concepts were then extended by defining topological subunits
(separable subregions) of a region. These subregions were then related using
the same hierarchical relation as before .

In comparison , the picture decomposition described l’ere is conceptually
similar to Brice and Fennema ’s region analysis (24). Brice and Fennema deal
with general gray level pictures , and approximate the region contours by straight
lines so heuristic analysis can be used to label the regions. In contrast
this research applies to binary—valued pictures only, does not approximate
the contours , and uses a nonheuristic method of labelling the regions.

In comparison , the region decomposition described here is conceptually
similar to Pavlidis formation of convex subsets (29,30). Pavlidis deals with
regions approximated by polygons , and generates a set of overlapping polygons
called primary subsets whose union gives the polygon region (see Figure 17).
The generation of the region ’s half—plane extensions is necessary to locate the
primary subsets. The areas where the primary subsets overlap are called the
nuclei. A graph where the nuclei and primary subsets are vertices , and the edges
denote an intersection relationshi p, can be derived to represent the region. This
graph is not dependent on the order in which the nuclei of the region are deter-
mined. The graph is a web and the decomposition of the region it represents can
be modelled by a context—sensitive web grammar. In contrast this research does
not approximate the contours , and generates a set of primitive separable sub-
region whose union does not give the region . The generation of the region ’s
skeleton is necessary to locate the primitive separable subregions. A graph
where the separable nodes and primitive separable subregions are vertices , and
the edges denote a hierarchical relationship, can be derived to represent the
region. This graph is dependent on the order in which the separable nodes are
selected . The graph is a tree and the decomposition which it represents can be
modelled by a context—free phrase structured grammar . Interestingly enough,
a separable node always corresponds to a nuclei; however , not every nuclei
corresponds to a separable node , e.g., compare Figures 17 and 18 to Figure 19.

• Ignoring for the moment the appropriateness of using a hierarchical
relation for labelling regions and subregions , two conclusions about this research
can be mode. First , the fact that the picture decomposition is topologically—
oriented and can be implemented by local parallel operations , indicates it
may be mimickirQ certain human—perception tasks suggested by psychologists (2).
Second, the fact that the region decomposition can invariantly extract the
protrusions (separable subregions) of an object indicates that it may be
a valuable tool for defining the elusive “primitives” needed for syntactic
recognition (33). In addition , because the formation of separable subregions
can be implemented by local parallel operations , it may be mimicking certain
feature/pri iitive extraction capabilities observed in humans.

L 18 
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Figure 10. Decomposition Using Forward Raster Index
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Figure 17. Decomposition Using Primary Subsets and Nuclei
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